Relativistic Astronomy
Abstract
The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- February 2018
- DOI:
- arXiv:
- arXiv:1708.03002
- Bibcode:
- 2018ApJ...854..123Z
- Keywords:
-
- methods: observational;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 9 pages, examples of how relativistic cameras will help to advance astronomy added, the version to appear in ApJ