Neutral gas heating by X-rays in primitive galaxies: Infrared observations of the blue compact dwarf I Zw 18 with Herschel
Abstract
Context. The neutral interstellar medium of galaxies acts as a reservoir to fuel star formation. The dominant heating and cooling mechanisms in this phase are uncertain in extremely metal-poor star-forming galaxies. The low dust-to-gas mass ratio and low polycyclic aromatic hydrocarbon abundance in such objects suggest that the traditional photoelectric effect heating may not be effective.
Aims: Our objective is to identify the dominant thermal mechanisms in one such galaxy,
Methods: Building on a previous photoionization model describing the giant H II region of I Zw 18-NW within a multi-sector topology, we provide additional constraints using, in particular, the [C II] 157 μm and [O I] 63 μm lines and the dust mass recently measured with the Herschel Space Telescope.
Results: The heating of the H I region appears to be mainly due to photoionization by radiation from a bright X-ray binary source, while the photoelectric effect is negligible. Significant cosmic ray heating is not excluded. Inasmuch as X-ray heating dominates in the H I gas, the infrared fine-structure lines provide an average X-ray luminosity of order 4 × 1040 erg s-1 over the last few 104 yr in the galaxy. The upper limits to the [Ne V] lines provide strong constraints on the soft X-ray flux arising from the binary. A negligible mass of H2 is predicted. Nonetheless, up to ~107 M⊙ of H2 may be hidden in a few sufficiently dense clouds of order ≲5 pc (≲0.05'') in size. Regardless of the presence of significant amounts of H2 gas, [C II] and [O I] do not trace the so-called "CO-dark gas", but they trace the almost purely atomic medium. Although the [C II]+[O I] to total infrared ratio in
Conclusions: X-ray heating could be an important process in extremely metal-poor sources. The lack of photoelectric heating due to the low dust-to-gas ratio tends to be compensated for by the larger occurrence and power of X-ray binaries in low-metallicity galaxies. We speculate that X-ray heating may quench star formation.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- June 2017
- DOI:
- arXiv:
- arXiv:1702.07377
- Bibcode:
- 2017A&A...602A..45L
- Keywords:
-
- X-rays: binaries;
- infrared: ISM;
- photon-dominated region (PDR);
- galaxies: ISM;
- galaxies: individual: I Zw 18;
- galaxies: star formation;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- Accepted for publication in A&