Transiting exoplanets from the CoRoT space mission. XIV. CoRoT-11b: a transiting massive ``hot-Jupiter'' in a prograde orbit around a rapidly rotating F-type star
Abstract
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M_* = 1.27±0.05 M⊙, R_* = 1.37±0.03 R⊙, Teff = 6440±120 K), with an orbital period of P = 2.994329±0.000011 days and semi-major axis a = 0.0436±0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (v sin i = 40±5 km s-1) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of Mp = 2.33±0.34 MJup and radius Rp =1.43±0.03 RJup, the resulting mean density of CoRoT-11b (ρp = 0.99±0.15 g/cm3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
The CoRoT space mission, launched on 2006 December 27, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain.- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- December 2010
- DOI:
- arXiv:
- arXiv:1009.2597
- Bibcode:
- 2010A&A...524A..55G
- Keywords:
-
- planetary systems;
- techniques: photometric;
- techniques: radial velocities;
- techniques: spectroscopic;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 15 pages, 13 figures, accepted for publication in A&