WISE J061213.85-303612.5: a new T-dwarf binary candidate
Abstract
Context. T and Y dwarfs are among the coolest and least luminous objects detected, and they can help to understand the properties of giant planets. Up to now, there are more than 350 T dwarfs that have been identified thanks to large imaging surveys in the infrared, and their multiplicity properties can shed light on the formation process.
Aims: The aim of this work is to look for companions around a sample of seven ultracoool objects. Most of them have been discovered by the WISE observatory and have not been studied before for multiplicity.
Methods: We observed a sample six T dwarfs and one L9 dwarf with the Laser Guide Star (LGS) and NAOS-CONICA, the adaptive optics (AO) facility, and the near infrared camera at the ESO Very Large Telescope. We observed all the objects in one or more near-IR filters (JHKs).
Results: From the seven observed objects, we have identified a subarcsecond binary system, WISE J0612-3036, composed of two similar components with spectral types of T6. We measure a separation of ρ = 350 ± 5 mas and a position angle of PA = 235 ± 1°. Using the mean absolute magnitudes of T6 dwarfs in the 2MASS JHKs bands, we estimate a distance of d = 31 ± 6 pc and derive a projected separation of ρ ~ 11 ± 2 au. Another target, WISE J2255-3118, shows a very faint object at 1.̋3 in the Ks image. The object is marginally detected in H, and we derive a near infrared color of H - Ks> 0.1 mag. HST/WFC3 public archival data reveals that the companion candidate is an extended source. Together with the derived color, this suggests that the source is most probably a background galaxy. The five other sources are apparently single, with 3-σ sensitivity limits between H = 19-21 for companions at separations ≥0.̋5.
Conclusions: WISE 0612-3036 is probably a new T-dwarf binary composed of two T6 dwarfs. As in the case of other late T-dwarf binaries, it shows a mass ratio close to 1, although its projected separation, ~11 au, is larger than the average (~5 au). Additional observations are needed to confirm that the system is bound.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- June 2015
- DOI:
- arXiv:
- arXiv:1504.03150
- Bibcode:
- 2015A&A...578A...1H
- Keywords:
-
- brown dwarfs;
- binaries: visual;
- techniques: high angular resolution;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 8 pages, 7 figures, A&