Self-CephaloNet: A Two-stage Novel Framework using Operational Neural Network for Cephalometric Analysis
Abstract
Cephalometric analysis is essential for the diagnosis and treatment planning of orthodontics. In lateral cephalograms, however, the manual detection of anatomical landmarks is a time-consuming procedure. Deep learning solutions hold the potential to address the time constraints associated with certain tasks; however, concerns regarding their performance have been observed. To address this critical issue, we proposed an end-to-end cascaded deep learning framework (Self-CepahloNet) for the task, which demonstrated benchmark performance over the ISBI 2015 dataset in predicting 19 dental landmarks. Due to their adaptive nodal capabilities, Self-ONN (self-operational neural networks) demonstrate superior learning performance for complex feature spaces over conventional convolutional neural networks. To leverage this attribute, we introduced a novel self-bottleneck in the HRNetV2 (High Resolution Network) backbone, which has exhibited benchmark performance on the ISBI 2015 dataset for the dental landmark detection task. Our first-stage results surpassed previous studies, showcasing the efficacy of our singular end-to-end deep learning model, which achieved a remarkable 70.95% success rate in detecting cephalometric landmarks within a 2mm range for the Test1 and Test2 datasets. Moreover, the second stage significantly improved overall performance, yielding an impressive 82.25% average success rate for the datasets above within the same 2mm distance. Furthermore, external validation was conducted using the PKU cephalogram dataset. Our model demonstrated a commendable success rate of 75.95% within the 2mm range.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.10984
- Bibcode:
- 2025arXiv250110984S
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Mathematics - Optimization and Control
- E-Print:
- The paper has been accepted for publication in Neural Computing and Applications