Learning Nonverbal Cues in Multiparty Social Interactions for Robotic Facilitators
Abstract
Conventional behavior cloning (BC) models often struggle to replicate the subtleties of human actions. Previous studies have attempted to address this issue through the development of a new BC technique: Implicit Behavior Cloning (IBC). This new technique consistently outperformed the conventional Mean Squared Error (MSE) BC models in a variety of tasks. Our goal is to replicate the performance of the IBC model by Florence [in Proceedings of the 5th Conference on Robot Learning, 164:158-168, 2022], for social interaction tasks using our custom dataset. While previous studies have explored the use of large language models (LLMs) for enhancing group conversations, they often overlook the significance of non-verbal cues, which constitute a substantial part of human communication. We propose using IBC to replicate nonverbal cues like gaze behaviors. The model is evaluated against various types of facilitator data and compared to an explicit, MSE BC model. Results show that the IBC model outperforms the MSE BC model across session types using the same metrics used in the previous IBC paper. Despite some metrics showing mixed results which are explainable for the custom dataset for social interaction, we successfully replicated the IBC model to generate nonverbal cues. Our contributions are (1) the replication and extension of the IBC model, and (2) a nonverbal cues generation model for social interaction. These advancements facilitate the integration of robots into the complex interactions between robots and humans, e.g., in the absence of a human facilitator.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.10857
- Bibcode:
- 2025arXiv250110857L
- Keywords:
-
- Computer Science - Robotics;
- Computer Science - Machine Learning
- E-Print:
- Submitted to as a short contribution to HRI2025