On the slice-torus invariant $q_M$ from $\mathbb{Z}_2$-equivariant Seiberg--Witten Floer cohomology
Abstract
We show that Iida--Taniguchi's $\mathbb{Z}$-valued slice-torus invariant $q_M$ cannot be realized as a linear combination of Rasmussen's $s$-invariant, Ozsv\'ath--Szab\'o's $\tau$-invariant, all of the $\mathfrak{sl}_N$-concordance invariants ($N \geq 2$), Baldwin--Sivek's instanton $\tau$-invariant, Daemi--Imori--Sato--Scaduto--Taniguchi's instanton $\tilde{s}$-invariant and Sano--Sato's Rasmussen type invariants $\tilde{ss}_c$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.07788
- Bibcode:
- 2025arXiv250107788I
- Keywords:
-
- Mathematics - Geometric Topology
- E-Print:
- 14 pages, 3 figures