Novel Silicon and GaAs Sensors for Compact Sampling Calorimeters
Abstract
Two samples of silicon pad sensors and two samples of GaAs sensors are studied in an electron beam with 5 GeV energy from the DESY-II test-beam facility. The sizes of the silicon and GaAs sensors are about 9$\times$9 cm$^2$ and 5$\times$8 cm$^2$, respectively. The thickness is 500 micrometer for both the silicon and GaAs sensors. The pad size is about 5$\times$5 mm$^2$. The sensors are foreseen to be used in a compact electromagnetic sampling calorimeter. The readout of the pads is done by metal traces connected to the pads and the front-end ASICs at the edges of the sensors. For the silicon sensors, copper traces on a Kapton foil are connected to the sensor pads with conducting glue. The pads of the GaAs sensors are connected to bond-pads via aluminium traces on the sensor substrate. The readout is based on a dedicated front-end ASIC, called FLAME. Pre-processing of the raw data and deconvolution is performed with FPGAs. The whole system is orchestrated by a Trigger Logic Unit. Results are shown for the signal-to-noise ratio, the homogeneity of the response, edge effects on pads, and for signals due to the readout traces.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- arXiv:
- arXiv:2501.07431
- Bibcode:
- 2025arXiv250107431A
- Keywords:
-
- Physics - Instrumentation and Detectors;
- High Energy Physics - Experiment
- E-Print:
- 22 pages, 24 figures, submitted to The European Physical Journal C