Uniform nonlinear Szemerédi theorem for corners in finite fields
Abstract
Let $P(t),Q(t)\in \mathbb{Q}(t)$ be rational functions such that $P(t),Q(t)$ and the constant function $1$ are linearly independent over $\mathbb{Q}$, we prove an asymptotic formula for the number of the corner configurations $(x_1,x_2),(x_1+P(y),x_2),(x_1,x_2+Q(y))$ in the subsets of $\mathbb{F}_p^2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2025
- DOI:
- arXiv:
- arXiv:2501.04887
- Bibcode:
- 2025arXiv250104887L
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 30 pages