Predicate Invention from Pixels via Pretrained Vision-Language Models
Abstract
Our aim is to learn to solve long-horizon decision-making problems in highly-variable, combinatorially-complex robotics domains given raw sensor input in the form of images. Previous work has shown that one way to achieve this aim is to learn a structured abstract transition model in the form of symbolic predicates and operators, and then plan within this model to solve novel tasks at test time. However, these learned models do not ground directly into pixels from just a handful of demonstrations. In this work, we propose to invent predicates that operate directly over input images by leveraging the capabilities of pretrained vision-language models (VLMs). Our key idea is that, given a set of demonstrations, a VLM can be used to propose a set of predicates that are potentially relevant for decision-making and then to determine the truth values of these predicates in both the given demonstrations and new image inputs. We build upon an existing framework for predicate invention, which generates feature-based predicates operating on object-centric states, to also generate visual predicates that operate on images. Experimentally, we show that our approach -- pix2pred -- is able to invent semantically meaningful predicates that enable generalization to novel, complex, and long-horizon tasks across two simulated robotic environments.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2501.00296
- Bibcode:
- 2025arXiv250100296A
- Keywords:
-
- Computer Science - Robotics;
- Computer Science - Artificial Intelligence;
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Machine Learning
- E-Print:
- Workshop on Planning in the Era of LLMs (LM4Plan @ AAAI 2025)