Bernis estimates for higher-dimensional doubly-degenerate non-Newtonian thin-film equations
Abstract
For the doubly-degenerate parabolic non-Newtonian thin-film equation $$ u_t + \text{div}\bigl(u^n |\nabla \Delta u|^{p-2} \nabla \Delta u\bigr) = 0, $$ we derive (local versions) of Bernis estimates of the form $$ \int_{\Omega} u^{n-2p} |\nabla u|^{3p}\, dx + \int_{\Omega} u^{n-\frac{p}{2}} |\Delta u|^{\frac{3p}{2}}\, dx \leq c(n,p,d) \int_{\Omega} u^n|\nabla \Delta u|^p\, dx, $$ for functions $u \in W^2_p(\Omega)$ with Neumann boundary condition, where $2 \leq p < \frac{19}{3}$ and $n$ lies in a certain range. Here, $\Omega \subset \mathbb{R}^d$ is a smooth convex domain with $d < 3p$. A particularly important consequence is the estimate $$ \int_{\Omega} |\nabla \Delta (u^{\frac{n+p}{p}})|^p\, dx \leq c(n,p,d) \int_{\Omega} u^n|\nabla \Delta u|^p\, dx. $$ The methods used in this article follow the approach of [Grü01] for the Newtonian case, while addressing the specific challenges posed by the nonlinear higher-order term $|\nabla \Delta u|^{p-2} \nabla \Delta u$ and the additional degeneracy. The derived estimates are key to establishing further qualitative results, such as the existence of weak solutions, finite propagation of support, and the appearance of a waiting-time phenomenon.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.15883
- Bibcode:
- 2024arXiv241215883L
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 76A05;
- 76A20;
- 35A23;
- 46B70;
- 35Q35;
- 35K35;
- 35K65
- E-Print:
- 24 pages, 1 figure