Geometric Height on Flag Varieties in Positive Characteristic
Abstract
Let $k$ be an algebraically closed field of characteristic $p\neq 0$. Let $G$ be a connected reductive group over $k$, $P \subseteq G$ be a parabolic subgroup and $\lambda: P \longrightarrow G$ be a strictly anti-dominant character. Let $C$ be a projective smooth curve over $k$ with function field $K=k(C)$ and $F$ be a principal $G$-bundle on $C$. Then $F/P \longrightarrow C$ is a flag bundle and $\mathcal{L}_\lambda=F \times_P k_\lambda$ on $F/P$ is a relatively ample line bundle. We compute the height filtration and successive minima of the height function $h_{\mathcal{L}_\lambda}: X(\overline{K}) \longrightarrow \mathbb{R}$ over the flag variety $X=(F/P)_K$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.10393
- Bibcode:
- 2024arXiv241210393C
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Algebraic Geometry;
- Mathematics - Representation Theory;
- 11G50