DNA codes from $(\text{\textbaro}, \mathfrak{d}, \gamma)$-constacyclic codes over $\mathbb{Z}_4+\omega\mathbb{Z}_4$
Abstract
This work introduces a novel approach to constructing DNA codes from linear codes over a non-chain extension of $\mathbb{Z}_4$. We study $(\text{\textbaro},\mathfrak{d}, \gamma)$-constacyclic codes over the ring $\mathfrak{R}=\mathbb{Z}_4+\omega\mathbb{Z}_4, \omega^2=\omega,$ with an $\mathfrak{R}$-automorphism $\text{\textbaro}$ and a $\text{\textbaro}$-derivation $\mathfrak{d}$ over $\mathfrak{R}.$ Further, we determine the generators of the $(\text{\textbaro},\mathfrak{d}, \gamma)$-constacyclic codes over the ring $\mathfrak{R}$ of any arbitrary length and establish the reverse constraint for these codes. Besides the necessary and sufficient criterion to derive reverse-complement codes, we present a construction to obtain DNA codes from these reversible codes. Moreover, we use another construction on the $(\text{\textbaro},\mathfrak{d},\gamma)$-constacyclic codes to generate additional optimal and new classical codes. Finally, we provide several examples of $(\text{\textbaro},\mathfrak{d}, \gamma)$ constacyclic codes and construct DNA codes from established results. The parameters of these linear codes over $\mathbb{Z}_4$ are better and optimal according to the codes available at \cite{z4codes}.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.10212
- Bibcode:
- 2024arXiv241210212S
- Keywords:
-
- Computer Science - Information Theory;
- 16S36;
- 92D20;
- 94B05;
- 94B15;
- 94B60
- E-Print:
- 20