NP-hardness and a PTAS for the Euclidean Steiner Line Problem
Abstract
The Euclidean Steiner Tree Problem (EST) seeks a minimum-cost tree interconnecting a given set of terminal points in the Euclidean plane, allowing the use of additional intersection points. In this paper, we consider two variants that include an additional straight line $\gamma$ with zero cost, which must be incorporated into the tree. In the Euclidean Steiner fixed Line Problem (ESfL), this line is given as input and can be treated as a terminal. In contrast, the Euclidean Steiner Line Problem (ESL) requires determining the optimal location of $\gamma$. Despite recent advances, including heuristics and a 1.214-approximation algorithm for both problems, a formal proof of NP-hardness has remained open. In this work, we close this gap by proving that both the ESL and ESfL are NP-hard. Additionally, we prove that both problems admit a polynomial-time approximation scheme (PTAS), by demonstrating that approximation algorithms for the EST can be adapted to the ESL and ESfL with appropriate modifications. Specifically, we show ESfL$\leq_{\text{PTAS}}$EST and ESL$\leq_{\text{PTAS}}$EST, i.e., provide a PTAS reduction to the EST.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.07046
- Bibcode:
- 2024arXiv241207046B
- Keywords:
-
- Computer Science - Computational Geometry;
- Computer Science - Data Structures and Algorithms