Structural characterization of the candidate Weyl semimetal CeGaGe
Abstract
Weyl semimetals have a variety of intriguing physical properties, including topologically protected electronic states that coexist with conducting states. Possible exploitation of topologically protected states in a conducting material is promising for technological applications. Weyl semimetals that form in a non-centrosymmetric structure that also contain magnetic moments may host a variety of emergent phenomena that cannot be seen in magnetic, centrosymmetric Weyl materials. It can be difficult to distinguish definitively between a centrosymmetric structure and one of its non-centrosymmetric subgroups with standard powder X-ray diffractometers in cases where two atoms in the compound have nearly the same atomic number, as is the case for the candidate Weyl semimetal CeGaGe. In these cases, a careful single-crystal neutron diffraction experiment with high-angle reflections provides complimentary information to X-ray diffraction and definitively resolves any ambiguity between centrosymmetric and non-centrosymmetric crystal structures. Single-crystal neutron diffraction measurements on the candidate Weyl semimetal CeGaGe confirms that its structure is non-centrosymmetric, described by space group 109 $\left(I4_1md\right)$ rather than the centrosymmetric space group 141 $\left(I4_1/amd\right)$. There are many high-angle reflections in the data set that give clear, physically intuitive evidence that CeGaGe forms with $I4_1md$ symmetry since Bragg planes of these reflections can contain Ga with no Ge or vice versa whereas the Bragg planes for a structure with $I4_1/amd$ symmetry would have a mix of Ga and Ge. Further, in some crystals we have studied, there is clear evidence for a structural transition from body-centered $I4_1md$ symmetry to primitive $P4_3$ and/or $P4_1$ symmetry.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2024
- DOI:
- arXiv:
- arXiv:2412.05219
- Bibcode:
- 2024arXiv241205219S
- Keywords:
-
- Condensed Matter - Strongly Correlated Electrons;
- Condensed Matter - Materials Science