Chemical Evolution of R-process Elements in Stars (CERES): IV. An observational run-up of the third r-process peak with Hf, Os, Ir, and Pt
Abstract
The third r-process peak (Os, Ir, Pt) is poorly understood due to observational challenges, with spectral lines located in the blue or near-ultraviolet region of stellar spectra. These challenges need to be overcome for a better understanding of the r-process in a broader context. To understand how the abundances of the third r-process peak are synthesised and evolve in the Universe, a homogeneous chemical analysis of metal-poor stars using high quality data observed in the blue region of the electromagnetic spectrum (< 400 nm) is necessary. We provide a homogeneous set of abundances for the third r-process peak (Os, Ir, Pt) and Hf, increasing by up to one order of magnitude their availability in the literature. A classical 1D, local thermodynamic equilibrium (LTE) analysis of four elements (Hf, Os, Ir, Pt) is performed, using ATLAS model atmospheres to fit synthetic spectra in high resolution (> 40,000), high signal-to-noise ratio, of 52 red giants observed with UVES/VLT. Due to the heavy line blending involved, a careful determination of upper limits and uncertainties is done. The observational results are compared with state-of-the-art nucleosynthesis models. Our sample displays larger abundances of Ir (Z=77) in comparison to Os (Z=76), which have been measured in a few stars in the past. The results also suggest decoupling between abundances of third r-process peak elements with respect to Eu (rare earth element) in Eu-poor stars. This seems to contradict a co-production scenario of Eu and the third r-process peak elements Os, Ir, and Pt in the progenitors of these objects. Our results are challenging to explain from the nucleosynthetic point of view: the observationally derived abundances indicate the need for an additional early, primary formation channel (or a non-robust r-process).
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2412.00195
- Bibcode:
- 2024arXiv241200195A
- Keywords:
-
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 15 pages, 11 figures, Accepted for publication in A&