Enhancing Quantum Memories with Light-Matter Interference
Abstract
Future optical quantum technologies, including quantum networks and distributed quantum computing and sensing, demand efficient, broadband quantum memories. However, achieving high efficiencies in optical quantum memory protocols is a significant challenge, and typical methods to increase the efficiency can often introduce noise, reduce the bandwidth, or limit scalability. Here, we present a new approach to enhancing quantum memory protocols by leveraging constructive light-matter interference. We implement this method in a Raman quantum memory in warm Cesium vapor, and achieve a more than three-fold improvement in total efficiency reaching $(34.3\pm8.4)\%$, while retaining GHz-bandwidth operation and low noise levels. Numerical simulations predict that this approach can boost efficiencies in systems limited by atomic density, such as cold atomic ensembles, from $65\%$ to beyond $96\%$, while in warm atomic vapors it could reduce the laser intensity to reach a given efficiency by over an order-of-magnitude, and exceed $95\%$ total efficiency. Furthermore, we find that our method preserves the single-mode nature of the memory at significantly higher efficiencies. This new protocol is applicable to various memory architectures, paving the way toward scalable, efficient, low-noise, and high-bandwidth quantum memories.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.17365
- Bibcode:
- 2024arXiv241117365B
- Keywords:
-
- Quantum Physics