Higher order Schrödinger equations on hyperbolic spaces
Abstract
We study the following higher order Schrödinger equation on hyperbolic space $\mathbb{H}^n$: $P_m u +a(x) u = |u|^{q - 2}u,$ where $P_m$ is the $2m$ order GJMS operator, $q=\frac{2n}{n-2m}$, $a(x) \in L^{\frac{n}{2m}}(\mathbb{H}^n)$ is a nonnegative potential function. We obtain a new concentration compactness principal for higher order problems on hyperbolic spaces. Under certain integrability assumptions on $a(x)$, we obtain the existence of solutions of the Schrödinger equations.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.14719
- Bibcode:
- 2024arXiv241114719L
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35J61;
- 35B33;
- 35B44;
- 35J30;
- 49J35;
- 46E35
- E-Print:
- 42 pages