The prime grid contains arbitrarily large empty polygons
Abstract
This paper proves a 2017 conjecture of De Loera, La Haye, Oliveros, and Roldán-Pensado that the "prime grid" $\big\{(p,q) \in \mathbb{Z}^2 : \text{$p$ and $q$ are prime}\big\} \subseteq \mathbb{R}^2$ contains empty polygons with arbitrarily many vertices. This implies that no Helly-type theorem is true for the prime grid.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.10549
- arXiv:
- arXiv:2411.10549
- Bibcode:
- 2024arXiv241110549D
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Metric Geometry;
- Mathematics - Number Theory
- E-Print:
- 6 pages