Strongly real adjoint orbits of complex symplectic Lie group
Abstract
We consider the adjoint action of the symplectic Lie group $\mathrm{Sp}(2n,\mathbb{C})$ on its Lie algebra $\mathfrak{sp}(2n,\mathbb{C})$. An element $X \in \mathfrak{sp}(2n,\mathbb{C})$ is called $\mathrm{Ad}_{\mathrm{Sp}(2n,\mathbb{C})}$-real if $ -X = \mathrm{Ad}(g)X$ for some $g \in \mathrm{Sp}(2n,\mathbb{C})$. Moreover, if $ -X = \mathrm{Ad}(h)X $ for some involution $h \in \mathrm{Sp}(2n,\mathbb{C})$, then $X \in \mathfrak{sp}(2n,\mathbb{C})$ is called strongly $\mathrm{Ad}_{\mathrm{Sp}(2n,\mathbb{C})}$-real. In this paper, we prove that for every element $X \in \mathfrak{sp}(2n,\mathbb{C})$, there exists a skew-involution $g \in \mathrm{Sp}(2n,\mathbb{C})$ such that $-X =\mathrm{Ad}(g)X$. Furthermore, we classify the strongly $\mathrm{Ad}_{\mathrm{Sp}(2n,\mathbb{C})}$-real elements in $\mathfrak{sp}(2n,\mathbb{C})$. We also classify skew-Hamiltonian matrices that are similar to their negatives via a symplectic involution.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- 10.48550/arXiv.2411.09575
- arXiv:
- arXiv:2411.09575
- Bibcode:
- 2024arXiv241109575L
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Representation Theory;
- Mathematics - Symplectic Geometry;
- Primary: 15A21;
- 15B30;
- Secondary: 22E60;
- 20E45 [2020]
- E-Print:
- 9 pages, Final version, To appear in Linear Algebra and its Applications