Evaluating the Propensity of Generative AI for Producing Harmful Disinformation During an Election Cycle
Abstract
Generative Artificial Intelligence offers a powerful tool for adversaries who wish to engage in influence operations, such as the Chinese Spamouflage operation and the Russian Internet Research Agency effort that both sought to interfere with recent US election cycles. Therefore, this study seeks to investigate the propensity of current generative AI models for producing harmful disinformation during an election cycle. The probability that different generative AI models produced disinformation when given adversarial prompts was evaluated, in addition the associated harm. This allows for the expected harm for each model to be computed and it was discovered that Copilot and Gemini tied for the overall safest performance by realizing the lowest expected harm, while GPT-4o produced the greatest rates of harmful disinformation, resulting in much higher expected harm scores. The impact of disinformation category was also investigated and Gemini was safest within the political category of disinformation due to mitigation attempts made by developers during the election, while Copilot was safest for topics related to health. Moreover, characteristics of adversarial roles were discovered that led to greater expected harm across all models. Finally, classification models were developed that predicted disinformation production based on the conditions considered in this study, which offers insight into factors important for predicting disinformation production. Based on all of these insights, recommendations are provided that seek to mitigate factors that lead to harmful disinformation being produced by generative AI models. It is hoped that developers will use these insights to improve future models.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.06120
- Bibcode:
- 2024arXiv241106120S
- Keywords:
-
- Computer Science - Artificial Intelligence