Strong Scatterings Invalidate Proposed Models of Enhanced TDE Rates in Post-Starburst Galaxies
Abstract
Stars wandering too close to supermassive black holes (SMBHs) can be ripped apart by the tidal forces of the black hole. Recent optical surveys have revealed that E+A galaxies are overrepresented by a factor $\sim $ 30, while green galaxies are overrepresented in both optical and infrared surveys. Different stellar models have been proposed to explain this Tidal Disruption Event (TDE) preference: ultra-steep stellar densities in the nuclear cluster, radial velocity anisotropies, and top-heavy Initial Mass Function (IMF). Here we explore these hypotheses in the framework of our revised loss cone theory that accounts for both weak and strong scattering, i.e., a scattering strong enough to eject a star from the nuclear cluster. We find that, when accounting for weak and strong scatterings, both ultra-steep densities and radial velocity anisotropies fail to explain the post-starburst preference of TDEs except when considering a high anisotropy factor together with a high SMBH mass and a shallow density profile of stellar mass black holes $\gamma_{\rm bh} =7/4$. Our findings hold when combining either model with top-heavy IMFs. Hence, new models to explain the post-starburst preference of TDEs are needed.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.05086
- Bibcode:
- 2024arXiv241105086T
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 12 pages, 7 figures, comments welcome