$L^p$ asymptotics for the heat equation on symmetric spaces for non-symmetric solutions
Abstract
The main goal of this work is to study the $L^p$-asymptotic behavior of solutions to the heat equation on arbitrary rank Riemannian symmetric spaces of non-compact type $G/K$ for non-bi-$K$ invariant initial data. For initial data $u_0$ compactly supported or in a weighted $L^1(G/K)$ space with a weight depending on $p\in [1, \infty]$, we introduce a mass function $M_p(u_0)(\cdot)$, and prove that if $h_t$ is the heat kernel on $G/K$, then $$\|h_t\|_p^{-1}\,\|u_0\ast h_t \, - \,M_p(u_0)(\cdot)\,h_t\|_p \rightarrow 0 \quad \text{as} \quad t\rightarrow \infty.$$ Interestingly, the $L^p$ heat concentration leads to completely different expressions of the mass function for $1\leq p <2$ and $2\leq p\leq \infty$. If we further assume that the initial data are bi-$K$-invariant, then our mass function boils down to the constant $\int_{G/K}u_0$ in the case $p=1$, and more generally to $\mathcal{H}{u_0}(i\rho(2/p-1))$ if $1\leq p<2$, and to $\mathcal{H}{u_0}(0)$ if $2\leq p \leq \infty$. Thus we improve upon results by Vázquez, Anker et al, Naik et al, clarifying the nature of the problem.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2024
- DOI:
- arXiv:
- arXiv:2411.02940
- Bibcode:
- 2024arXiv241102940P
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 22E30;
- 35B40;
- 35K05;
- 58J35