Real-time Fake News from Adversarial Feedback
Abstract
We show that existing evaluations for fake news detection based on conventional sources, such as claims on fact-checking websites, result in high accuracies over time for LLM-based detectors -- even after their knowledge cutoffs. This suggests that recent popular fake news from such sources can be easily detected due to pre-training and retrieval corpus contamination or increasingly salient shallow patterns. Instead, we argue that a proper fake news detection dataset should test a model's ability to reason factually about the current world by retrieving and reading related evidence. To this end, we develop a novel pipeline that leverages natural language feedback from a RAG-based detector to iteratively modify real-time news into deceptive fake news that challenges LLMs. Our iterative rewrite decreases the binary classification ROC-AUC by an absolute 17.5 percent for a strong RAG-based GPT-4o detector. Our experiments reveal the important role of RAG in both detecting and generating fake news, as retrieval-free LLM detectors are vulnerable to unseen events and adversarial attacks, while feedback from RAG detection helps discover more deceitful patterns in fake news.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2024
- DOI:
- arXiv:
- arXiv:2410.14651
- Bibcode:
- 2024arXiv241014651C
- Keywords:
-
- Computer Science - Computation and Language;
- Computer Science - Artificial Intelligence