Multiplicity One Theorem for General Spin Groups: The Archimedean Case
Abstract
Let $\GSpin(V)$ (resp. $\GPin(V)$) be a general spin group (resp. a general Pin group) associated with a nondegenerate quadratic space $V$ of dimension $n$ over an Archimedean local field $F$. For a nondegenerate quadratic space $W$ of dimension $n-1$ over $F$, we also consider $\GSpin(W)$ and $\GPin(W)$. We prove the multiplicity-at-most-one theorem in the Archimedean case for a pair of groups ($\GSpin(V), \GSpin(W)$) and also for a pair of groups ($\GPin(V), \GPin(W)$); namely, we prove that the restriction to $\GSpin(W)$ (resp. $\GPin(W)$) of an irreducible Casselman-Wallach representation of $\GSpin(V)$ (resp. $\GPin(V)$) is multiplicity free.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- 10.48550/arXiv.2409.09320
- arXiv:
- arXiv:2409.09320
- Bibcode:
- 2024arXiv240909320E
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Number Theory;
- 22E30;
- 22E46