$[C_{2}mim][CH_{3}SO_{3}]$ -- A Suitable New Heat Transfer Fluid? Part 2: Thermophysical Properties of Its Mixtures with Water
Abstract
Ionic liquids have proved to be excellent heat transfer fluids and alternatives to common HTFs used in industries for heat exchangers and other heat transfer equipment. However, its industrial utilization depends on the cost per kg of its production, to be competitive for industrial applications with biphenyl and diphenyl oxide, alkylated aromatics, and dimethyl polysiloxane oils, which degrade above 200 °C and possess some environmental problems. The efficiency of a heat transfer fluid depends on the fundamental thermophysical properties influencing convective heat transfer (density, heat capacity, thermal conductivity, and viscosity), as these properties are necessary to calculate the heat transfer coefficients for different heat exchanger geometries. In Part 1, the thermophysical properties of pure 1-ethyl-3-methylimidazolium methanesulfonate $[C_{2}mim][CH_{3}SO_{3}]$ (CAS no. 145022-45-3), (ECOENG 110), produced by BASF, under the trade name of Basionics ST35, with an assay $\geq$97% with $\leq$0.5% water and $\leq$2% chloride ($Cl^{-}$), were presented, for temperatures slightly below room temperature and up to 355 K. In this paper, we report the thermophysical properties of mixtures of [C2mim][CH3SO3] with water, in the whole concentration range, at $P$ = 0.1 MPa. The properties measured were density and speed of sound (293.15 < $T$/K < 343.15), viscosity, electrical and thermal conductivities, refractive index (293.15 < $T$/K < 353.15), and infinite dilution diffusion coefficient of the ionic liquid in water (298.15 K).
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- 10.48550/arXiv.2409.04070
- arXiv:
- arXiv:2409.04070
- Bibcode:
- 2024arXiv240904070B
- Keywords:
-
- Physics - Chemical Physics
- E-Print:
- Ind. Eng. Chem. Res. 2022, 61, 5, 2280-2305