Imaging the black hole shadow and extended jet of M87
Abstract
The galaxy M87 is one of the prime targets for high resolution radio imaging pursuing the ringlike shadow of its supermassive black hole, the innermost regions of accretion flow, and the formation of the relativistic jet. However, it remains challenging to observe both jointly. Only recently, global mm-VLBI array (GMVA)+ALMA observations at 86 GHz in 2018 were able to reconstruct the M87 black hole shadow and the extended jet emission simultaneously. In order to analyze the ring and jet of M87, conventional CLEAN algorithms were mainly employed alongside the RML method SMILI in the previous work. To test the robustness of the reconstructed structures of M87 GMVA+ALMA observations at 86GHz, we estimate the ring diameter, width, and the extended jet emission with the possible central spine by two different novel imaging algorithms: resolve and DoG-HiT. Overall reconstructions are consistent with the results reported in the previous paper. The ring structure of the M87 is resolved at higher resolution and the posterior distribution of M87 ring features is explored. The resolve images show that the ring diameter is 60.9 +- 2.2 muas and width is 16.0 +- 0.9 muas. The ring diameter is 61.0 muas and width is 20.6 muas by DoG-HiT. The ring diameter is therefore in agreement with the estimation (64+4-8 muas) by SMILI and the geometrical modeling. Two bright spots in the ring are reconstructed by four independent imaging methods, the substructure in the ring is therefore most likely originated from the data. A consistent limb-brightened jet structure is reconstructed by resolve and DoG-HiT, albeit with a less pronounced central spine. Modern data-driven imaging methods confirm the ring and jet structure in M87, complementing traditional VLBI methods with novel perspectives on the significance of recovered features. They confirm the result of the previous report.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- arXiv:
- arXiv:2409.00540
- Bibcode:
- 2024arXiv240900540K
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Instrumentation and Methods for Astrophysics
- E-Print:
- submitted to A&