A Novel Buffered Federated Learning Framework for Privacy-Driven Anomaly Detection in IIoT
Abstract
Industrial Internet of Things (IIoT) is highly sensitive to data privacy and cybersecurity threats. Federated Learning (FL) has emerged as a solution for preserving privacy, enabling private data to remain on local IIoT clients while cooperatively training models to detect network anomalies. However, both synchronous and asynchronous FL architectures exhibit limitations, particularly when dealing with clients with varying speeds due to data heterogeneity and resource constraints. Synchronous architecture suffers from straggler effects, while asynchronous methods encounter communication bottlenecks. Additionally, FL models are prone to adversarial inference attacks aimed at disclosing private training data. To address these challenges, we propose a Buffered FL (BFL) framework empowered by homomorphic encryption for anomaly detection in heterogeneous IIoT environments. BFL utilizes a novel weighted average time approach to mitigate both straggler effects and communication bottlenecks, ensuring fairness between clients with varying processing speeds through collaboration with a buffer-based server. The performance results, derived from two datasets, show the superiority of BFL compared to state-of-the-art FL methods, demonstrating improved accuracy and convergence speed while enhancing privacy preservation.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2024
- DOI:
- arXiv:
- arXiv:2408.08722
- Bibcode:
- 2024arXiv240808722K
- Keywords:
-
- Computer Science - Cryptography and Security