On a critical Hamiltonian system with Neumann boundary conditions
Abstract
We consider the Hamiltonian system with Neumann boundary conditions: \[ -\Delta u + \mu u=v^{q }, \quad -\Delta v+ \mu v=u^{p} \quad \text{ in $\Omega$}, \qquad u, v >0 \quad \text{ in $\Omega$,} \qquad \partial_\nu u= \partial_\nu v=0 \quad \text{ on $\partial \Omega$, } \] where $\mu >0$ is a parameter and $\Omega$ is a smooth bounded domain in $\mathbb R^N .$ When $(p, q)$ approaches from below the critical hyperbola $N/(p+1) + N/(q+1)=N-2$, we build a solution which blows-up at a boundary point where the mean curvature achieves its minimum and negative value.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2407.00794
- arXiv:
- arXiv:2407.00794
- Bibcode:
- 2024arXiv240700794P
- Keywords:
-
- Mathematics - Analysis of PDEs