DiTFastAttn: Attention Compression for Diffusion Transformer Models
Abstract
Diffusion Transformers (DiT) excel at image and video generation but face computational challenges due to the quadratic complexity of self-attention operators. We propose DiTFastAttn, a post-training compression method to alleviate the computational bottleneck of DiT. We identify three key redundancies in the attention computation during DiT inference: (1) spatial redundancy, where many attention heads focus on local information; (2) temporal redundancy, with high similarity between the attention outputs of neighboring steps; (3) conditional redundancy, where conditional and unconditional inferences exhibit significant similarity. We propose three techniques to reduce these redundancies: (1) Window Attention with Residual Sharing to reduce spatial redundancy; (2) Attention Sharing across Timesteps to exploit the similarity between steps; (3) Attention Sharing across CFG to skip redundant computations during conditional generation. We apply DiTFastAttn to DiT, PixArt-Sigma for image generation tasks, and OpenSora for video generation tasks. Our results show that for image generation, our method reduces up to 76% of the attention FLOPs and achieves up to 1.8x end-to-end speedup at high-resolution (2k x 2k) generation.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.08552
- arXiv:
- arXiv:2406.08552
- Bibcode:
- 2024arXiv240608552Y
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition