Atypical bifurcation for periodic solutions of $\phi$-Laplacian systems
Abstract
In this paper, we study the $T$-periodic solutions of the parameter-dependent $\phi$-Laplacian equation \begin{equation*} (\phi(x'))'=F(\lambda,t,x,x'). \end{equation*} Based on the topological degree theory, we present some atypical bifurcation results in the sense of Prodi--Ambrosetti, i.e., bifurcation of $T$-periodic solutions from $\lambda=0$. Finally, we propose some applications to Liénard-type equations.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.00325
- arXiv:
- arXiv:2406.00325
- Bibcode:
- 2024arXiv240600325B
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 34B15;
- 34C23;
- 34C25;
- 47H11;
- 47J05
- E-Print:
- 22 pages, 1 figure