Euclid preparation. LensMC, weak lensing cosmic shear measurement with forward modelling and Markov Chain Monte Carlo sampling
Abstract
LensMC is a weak lensing shear measurement method developed for Euclid and Stage-IV surveys. It is based on forward modelling to deal with convolution by a point spread function with comparable size to many galaxies; sampling the posterior distribution of galaxy parameters via Markov Chain Monte Carlo; and marginalisation over nuisance parameters for each of the 1.5 billion galaxies observed by Euclid. The scientific performance is quantified through high-fidelity images based on the Euclid Flagship simulations and emulation of the Euclid VIS images; realistic clustering with a mean surface number density of 250 arcmin$^{-2}$ ($I_{\rm E}<29.5$) for galaxies, and 6 arcmin$^{-2}$ ($I_{\rm E}<26$) for stars; and a diffraction-limited chromatic point spread function with a full width at half maximum of $0.^{\!\prime\prime}2$ and spatial variation across the field of view. Objects are measured with a density of 90 arcmin$^{-2}$ ($I_{\rm E}<26.5$) in 4500 deg$^2$. The total shear bias is broken down into measurement (our main focus here) and selection effects (which will be addressed elsewhere). We find: measurement multiplicative and additive biases of $m_1=(-3.6\pm0.2)\times10^{-3}$, $m_2=(-4.3\pm0.2)\times10^{-3}$, $c_1=(-1.78\pm0.03)\times10^{-4}$, $c_2=(0.09\pm0.03)\times10^{-4}$; a large detection bias with a multiplicative component of $1.2\times10^{-2}$ and an additive component of $-3\times10^{-4}$; and a measurement PSF leakage of $\alpha_1=(-9\pm3)\times10^{-4}$ and $\alpha_2=(2\pm3)\times10^{-4}$. When model bias is suppressed, the obtained measurement biases are close to Euclid requirement and largely dominated by undetected faint galaxies ($-5\times10^{-3}$). Although significant, model bias will be straightforward to calibrate given the weak sensitivity. LensMC is publicly available at https://gitlab.com/gcongedo/LensMC
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2024
- DOI:
- 10.48550/arXiv.2405.00669
- arXiv:
- arXiv:2405.00669
- Bibcode:
- 2024arXiv240500669E
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Physics - Data Analysis;
- Statistics and Probability;
- Statistics - Computation
- E-Print:
- 29 pages, 18 figures, 2 tables