Quasirandom and quasisimple groups
Abstract
Fix $\varepsilon>0$. We say that a finite group $G$ is $\varepsilon$-quasirandom if every nontrivial irreducible complex representation of $G$ has degree at least $|G|^\varepsilon$. In this paper, we give a structure theorem for large $\varepsilon$-quasirandom groups, and we completely classify the $\frac{1}{5}$-quasirandom groups.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2024
- DOI:
- 10.48550/arXiv.2404.05550
- arXiv:
- arXiv:2404.05550
- Bibcode:
- 2024arXiv240405550B
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Representation Theory;
- Primary: 20D99;
- 20C99
- E-Print:
- 22 pages