Play to Your Strengths: Collaborative Intelligence of Conventional Recommender Models and Large Language Models
Abstract
The rise of large language models (LLMs) has opened new opportunities in Recommender Systems (RSs) by enhancing user behavior modeling and content understanding. However, current approaches that integrate LLMs into RSs solely utilize either LLM or conventional recommender model (CRM) to generate final recommendations, without considering which data segments LLM or CRM excel in. To fill in this gap, we conduct experiments on MovieLens-1M and Amazon-Books datasets, and compare the performance of a representative CRM (DCNv2) and an LLM (LLaMA2-7B) on various groups of data samples. Our findings reveal that LLMs excel in data segments where CRMs exhibit lower confidence and precision, while samples where CRM excels are relatively challenging for LLM, requiring substantial training data and a long training time for comparable performance. This suggests potential synergies in the combination between LLM and CRM. Motivated by these insights, we propose Collaborative Recommendation with conventional Recommender and Large Language Model (dubbed \textit{CoReLLa}). In this framework, we first jointly train LLM and CRM and address the issue of decision boundary shifts through alignment loss. Then, the resource-efficient CRM, with a shorter inference time, handles simple and moderate samples, while LLM processes the small subset of challenging samples for CRM. Our experimental results demonstrate that CoReLLa outperforms state-of-the-art CRM and LLM methods significantly, underscoring its effectiveness in recommendation tasks.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- 10.48550/arXiv.2403.16378
- arXiv:
- arXiv:2403.16378
- Bibcode:
- 2024arXiv240316378X
- Keywords:
-
- Computer Science - Information Retrieval