The Firefly Sparkle: The Earliest Stages of the Assembly of A Milky Way-type Galaxy in a 600 Myr Old Universe
Abstract
The most distant galaxies detected by JWST are assembling in a Universe that is less than 5\% of its present age. At these times, the progenitors of galaxies like the Milky Way are expected to be about 10,000 times less massive than they are now, with masses quite comparable to that of massive globular clusters seen in the local Universe. Composed today primarily of old stars and correlating with the properties of their parent dark matter halos, the first globular clusters are thought to have formed during the earliest stages of galaxy assembly. In this article we explore the connection between star clusters and galaxy assembly by showing JWST observations of a strongly lensed galaxy at zspec = 8.304, exhibiting a network of massive star clusters (the 'Firefly Sparkle') cocooned in a diffuse arc. The Firefly Sparkle exhibits the hallmarks expected of a future Milky Way-type galaxy captured during its earliest and most gas-rich stage of formation. The mass distribution of the galaxy seems to be concentrated in ten distinct clusters, with individual cluster masses that straddle the boundary between low-mass galaxies and high-mass globular clusters. The cluster ages suggest that they are gravitationally bound with star formation histories showing a recent starburst possibly triggered by the interaction with a companion galaxy at the same redshift at a projected distance of $\sim$2 kpc away from the Firefly Sparkle. The central star cluster shows nebular-dominated spectra consistent with high temperatures and a top-heavy initial mass function, the product of formation in a very metal poor environment. Combined with abundance matching that suggests that this is likely to be a progenitor of galaxies like our own, the Firefly Sparkle provides an unprecedented case study of a Milky Way-like galaxy in the earliest stages of its assembly in only a 600 million year old Universe.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2024
- DOI:
- 10.48550/arXiv.2402.08696
- arXiv:
- arXiv:2402.08696
- Bibcode:
- 2024arXiv240208696M
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- submitted, comments are welcome! 36 pages, 9 figures