Non-ultralocal classical r-matrix structure for 1+1 field analogue of elliptic Calogero-Moser model
Abstract
We consider 1+1 field generalization of the elliptic Calogero-Moser model. It is shown that the Lax connection satisfies the classical non-ultralocal r-matrix structure of Maillet type. Next, we consider 1+1 field analogue of the spin Calogero-Moser model and its multipole (or multispin) extension. Finally, we discuss the field analogue of the classical IRF-Vertex correspondence, which relates utralocal and non-ultralocal r-matrix structures.
- Publication:
-
Journal of Physics A Mathematical General
- Pub Date:
- August 2024
- DOI:
- 10.1088/1751-8121/ad5ee1
- arXiv:
- arXiv:2404.01898
- Bibcode:
- 2024JPhA...57E5201Z
- Keywords:
-
- Calogero–Moser field theory;
- non-ultralocal models;
- integrable systems;
- soliton equations;
- High Energy Physics - Theory;
- Mathematical Physics;
- Nonlinear Sciences - Exactly Solvable and Integrable Systems
- E-Print:
- 26 pages, some comments and Appendix added