Ultrafine CoRu alloy nanoclusters densely anchored on Nitrogen-Doped graphene nanotubes for a highly efficient hydrogen evolution reaction
Abstract
Designing highly efficient and stable electrocatalysts for hydrogen evolution reactions (HER) is essential to the production of green and renewable hydrogen. Metal-organic framework (MOF) precursor strategies are promising for the design of excellent electrocatalysts because of their porous architectures and adjustable compositions. In this study, a hydrogen-bonded organic framework (HOF) nanowire was developed as a precursor and template for the controllable and scalable synthesis of CoRu-MOF nanotubes. After calcination in Ar, the CoRu-MOF nanotubes were converted into N-doped graphene (NG) nanotubes with ultrafine CoRu nanoclusters (hereon called Co-xRu@NG-T; x = 0, 5, 10, 15, 25 representing the Ru content of 0-0.25 mmol; T = 400 °C to 700 °C) that were densely encapsulated and isolated on the shell. Taking advantage of the synergistic effects of the porous, one-dimensional hollow structure and ultrafine CoRu nanoclusters, the optimized Co-15Ru@NG-500 catalyst demonstrated superior catalytic performance for HERs in alkaline electrolytes with an overpotential of only 30 mV at 10 mA cm-2 and robust durability for 2000 cycles, which outperforms many typical catalytic materials, such as commercial Pt/C. This work introduces a novel high-efficiency and cost-effective HER catalyst for application in commercial water-splitting electrolysis.
- Publication:
-
Journal of Colloid and Interface Science
- Pub Date:
- May 2024
- DOI:
- Bibcode:
- 2024JCIS..662..995X
- Keywords:
-
- Metal-organic frameworks;
- Template strategy;
- N-doped graphene nanotubes;
- CoRu nanoclusters;
- Hydrogen evolution reaction