BekensteinHawking entropy products for NUT class of black holes in AdS space
Abstract
In this paper, we derive the entropy product rule for TaubNewmanUntiTamburino (TaubNUT)de Sitter black hole (BH) and TaubNUTantide Sitter BH. We show that the entropy products in terms of both the physical horizons are massindependent. Both perturbative approximation and direct method have been considered. By introducing the cosmological horizon, we show that for TaubNUTde Sitter BH, there exists a massindependent entropy functional relation in terms of three horizons namely event horizon (EH), Cauchy horizon (CH) and cosmological horizon (CHH) which depends on cosmological parameter (Λ) and the NUT parameter (N). For TaubNUTantide Sitter BHs, we determine the massindependent entropy functional relations in terms of two physical horizons (namely EH and CH) which depends on only NUT parameter. Sometimes some complicated functions of EH entropy and CH entropy are also strictly massindependent. This is plausible only due to the new formalism developed in [S. Wu and D. Wu, Phys. Rev. D 100, 101501(R) (2019)] for NUT class of BHs. The formalism states that a generic four dimensional TaubNUT spacetime should be described completely in terms of three or four different types of thermodynamic hairs. They could be defined as the Komar mass (M=m), the angular momentum (Jn=mn), the gravitomagnetic charge (N=n), the dual (magnetic) mass (M̃=n). Finally, we could say that this universality is mainly due to the presence of new conserved charges JN=MN which is closely analogue to the Kerrlike angular momentum J=aM.
 Publication:

International Journal of Modern Physics A
 Pub Date:
 March 2024
 DOI:
 10.1142/S0217751X24500441
 arXiv:
 arXiv:2404.07274
 Bibcode:
 2024IJMPA..3950044P
 Keywords:

 Entropy product function;
 TNUT–de Sitter BH;
 TNUT–antide Sitter BH;
 04.70.Bw;
 04.25.Nx;
 04.40.Nr;
 Classical black holes;
 PostNewtonian approximation;
 perturbation theory;
 related approximations;
 EinsteinMaxwell spacetimes spacetimes with fluids radiation or classical fields;
 General Relativity and Quantum Cosmology;
 High Energy Physics  Theory;
 Mathematical Physics
 EPrint:
 Accepted in IJMPA