A Supermassive Binary Black Hole Candidate in Mrk 501
Abstract
Using multifrequency observations, from radio to γ-rays of the blazar Mrk 501, we constructed their corresponding light curves and built periodograms using RobPer and Lomb–Scargle algorithms. Long-term variability was also studied using the power density spectrum and the detrended function analysis. Using the software VARTOOLS Version 1.40, we also computed the analysis of variance, box-least squares and discrete fourier transform. The result of these techniques showed an achromatic periodicity ≲229d. This, combined with the result of pink-color noise in the spectra, led us to propose that the periodicity was produced via a secondary eclipsing supermassive binary black hole orbiting the primary one locked inside the central engine of Mrk 501. We built a relativistic eclipsing model of this phenomenon using Jacobi elliptical functions, finding a periodic relativistic eclipse occurring every ∼224d in all the studied wavebands. This implies that the frequency of the emitted gravitational waves falls slightly above 0.1 mHz, well within the operational range of the upcoming LISA space-based interferometer, and as such, these gravitational waves must be considered as a prime science target for future LISA observations.
- Publication:
-
Galaxies
- Pub Date:
- June 2024
- DOI:
- 10.3390/galaxies12030030
- arXiv:
- arXiv:2210.15884
- Bibcode:
- 2024Galax..12...30M
- Keywords:
-
- galaxies;
- quasars;
- individual;
- Mrk 501—galaxies;
- supermassive black holes;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 20 pages, 8 figures. Accepted for publication in the Journal Galaxies