Systematic effects on the upcoming NIKA2 LPSZ scaling relation
Abstract
In cluster cosmology, cluster masses are the main parameter of interest. They are needed to constrain cosmological parameters through the cluster number count. As the mass is not an observable, a scaling relation is needed to link cluster masses to the integrated Compton parameters Y, i.e. the Sunyaev-Zeldovich observable (SZ). Planck cosmological results obtained with cluster number counts are based on a scaling relation measured with clusters at low redshift (z<0.5) observed in SZ and X-ray. In the SZ Large Program (LPSZ) of the NIKA2 collaboration, the scaling relation will be obtained with a sample of 38 clusters at intermediate to high redshift (0.5 < z < 0.9) and observed at high angular resolution in both SZ and X-ray. Thanks to analytical simulation of LPSZ-like samples, we take into account the LPSZ selection function and correct for its effects. Besides, we show that white and correlated noises in the SZ maps do not affect the scaling relation estimation.
- Publication:
-
mm Universe 2023 - Observing the Universe at mm Wavelengths
- Pub Date:
- June 2024
- DOI:
- 10.1051/epjconf/202429300032
- arXiv:
- arXiv:2310.01263
- Bibcode:
- 2024EPJWC.29300032M
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Sciences