The AGORA High-resolution Galaxy Simulations Comparison Project. VI. Similarities and Differences in the Circumgalactic Medium
Abstract
We analyze the circumgalactic medium (CGM) for eight commonly-used cosmological codes in the AGORA collaboration. The codes are calibrated to use identical initial conditions, cosmology, heating and cooling, and star formation thresholds, but each evolves with its own unique code architecture and stellar feedback implementation. Here, we analyze the results of these simulations in terms of the structure, composition, and phase dynamics of the CGM. We show properties such as metal distribution, ionization levels, and kinematics are effective tracers of the effects of the different code feedback and implementation methods, and as such they can be highly divergent between simulations. This is merely a fiducial set of models, against which we will in the future compare multiple feedback recipes for each code. Nevertheless, we find that the large parameter space these simulations establish can help disentangle the different variables that affect observable quantities in the CGM, e.g., showing that abundances for ions with higher ionization energy are more strongly determined by the simulation's metallicity, while abundances for ions with lower ionization energy are more strongly determined by the gas density and temperature.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- February 2024
- DOI:
- arXiv:
- arXiv:2402.05246
- Bibcode:
- 2024ApJ...962...29S
- Keywords:
-
- Circumgalactic medium;
- Hydrodynamical simulations;
- Computational astronomy;
- Astronomical simulations;
- 1879;
- 767;
- 293;
- 1857;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 32 pages, 17 figures. Published in ApJ