Clustered Switchback Experiments: Near-Optimal Rates Under Spatiotemporal Interference
Abstract
We consider experimentation in the presence of non-stationarity, inter-unit (spatial) interference, and carry-over effects (temporal interference), where we wish to estimate the global average treatment effect (GATE), the difference between average outcomes having exposed all units at all times to treatment or to control. We suppose spatial interference is described by a graph, where a unit's outcome depends on its neighborhood's treatment assignments, and that temporal interference is described by a hidden Markov decision process, where the transition kernel under either treatment (action) satisfies a rapid mixing condition. We propose a clustered switchback design, where units are grouped into clusters and time steps are grouped into blocks and each whole cluster-block combination is assigned a single random treatment. Under this design, we show that for graphs that admit good clustering, a truncated exposure-mapping Horvitz-Thompson estimator achieves $\tilde O(1/NT)$ mean-squared error (MSE), matching an $\Omega(1/NT)$ lower bound up to logarithmic terms. Our results simultaneously generalize the $N=1$ setting of Hu, Wager 2022 (and improves on the MSE bound shown therein for difference-in-means estimators) as well as the $T=1$ settings of Ugander et al 2013 and Leung 2022. Simulation studies validate the favorable performance of our approach.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2023
- DOI:
- arXiv:
- arXiv:2312.15574
- Bibcode:
- 2023arXiv231215574J
- Keywords:
-
- Mathematics - Statistics Theory;
- Computer Science - Machine Learning