On the spectral gap of Cayley graphs
Abstract
Let $\Gamma$ be a Cayley graph, or a Cayley sum graph, or a twisted Cayley graph, or a twisted Cayley sum graph, or a vertex-transitive graph. Suppose $\Gamma$ is undirected and non-bipartite. Let $\mu$ (resp. $\mu_2$) denote the smallest (resp. the second largest) eigenvalue of the normalized adjacency operator of $\Gamma$, and $d$ denote the degree of $\Gamma$. We show that $1+ \mu = \Omega((1-\mu_2)/d)$ holds.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2023
- DOI:
- arXiv:
- arXiv:2312.06604
- Bibcode:
- 2023arXiv231206604S
- Keywords:
-
- Mathematics - Combinatorics