Minimal free resolution of generalized repunit algebras
Abstract
Let $\Bbbk$ be an arbitrary field and let $b > 1, n > 1$ and $a$ be three positive integers. In this paper we explicitly describe a minimal $S-$graded free resolution of the semigroup algebra $\Bbbk[S]$ when $S$ is a generalized repunit numerical semigroup, that is, when $S$ is the submonoid of $\mathbb{N}$ generated by $\{a_1, a_2, \ldots, a_n\}$ where $a_1 = \sum_{j=0}^{n-1} b^j$ and $a_i - a_{i-1} = a\, b^{i-2},\ i = 2, \ldots, n$, with $\gcd(a,a_1) = 1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2023
- DOI:
- arXiv:
- arXiv:2312.06013
- Bibcode:
- 2023arXiv231206013C
- Keywords:
-
- Mathematics - Commutative Algebra;
- Primary: 16W50;
- 13D02 secondary: 20M14
- E-Print:
- 9 pages. To appear in Communications in Algebra