Arbitrarily long strings of consecutive primes in special sets
Abstract
Let $F(x)$ be a function of the form $ \sum_{i=1}^r d_i x^{\rho_i}$ where $d_1,\ldots,d_r\in\mathbb{R}$, $0 \leq \rho_1 < \ldots < \rho_r,$ $\rho_r \not\in \mathbb{Z},\rho_i \in \mathbb{R}$ for $ 1 \leq i \leq r$ and $d_r\not=0$. We prove that sets of the form $\{ n \in \mathbb{N}: \{ F(n) \} \in U \}$ for any non-empty open set $U \subset [0,1)$ contain arbitrarily long strings of consecutive primes.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.18701
- Bibcode:
- 2023arXiv231118701S
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 34 pages