Community-Aware Efficient Graph Contrastive Learning via Personalized Self-Training
Abstract
In recent years, graph contrastive learning (GCL) has emerged as one of the optimal solutions for various supervised tasks at the node level. However, for unsupervised and structure-related tasks such as community detection, current GCL algorithms face difficulties in acquiring the necessary community-level information, resulting in poor performance. In addition, general contrastive learning algorithms improve the performance of downstream tasks by increasing the number of negative samples, which leads to severe class collision and unfairness of community detection. To address above issues, we propose a novel Community-aware Efficient Graph Contrastive Learning Framework (CEGCL) to jointly learn community partition and node representations in an end-to-end manner. Specifically, we first design a personalized self-training (PeST) strategy for unsupervised scenarios, which enables our model to capture precise community-level personalized information in a graph. With the benefit of the PeST, we alleviate class collision and unfairness without sacrificing the overall model performance. Furthermore, the aligned graph clustering (AlGC) is employed to obtain the community partition. In this module, we align the clustering space of our downstream task with that in PeST to achieve more consistent node embeddings. Finally, we demonstrate the effectiveness of our model for community detection both theoretically and experimentally. Extensive experimental results also show that our CEGCL exhibits state-of-the-art performance on three benchmark datasets with different scales.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.11073
- Bibcode:
- 2023arXiv231111073L
- Keywords:
-
- Computer Science - Social and Information Networks;
- Computer Science - Artificial Intelligence;
- Computer Science - Machine Learning
- E-Print:
- 12 pages, 7 figures