Patterning edge-like defects and tuning defective areas on the basal plane of ultra-large MoS$_{2}$ monolayers toward hydrogen evolution reaction
Abstract
The catalytic sites of MoS$_{2}$ monolayers towards hydrogen evolution are well known to be vacancies and edge-like defects. However, it is still very challenging to control the position, size, and defective areas on the basal plane of Mo$S_{2}$ monolayers by most of defect-engineering routes. In this work, the fabrication of etched arrays on ultra-large supported and free-standing MoS$_{2}$ monolayers using focused ion beam (FIB) is reported for the first time. By tuning the Ga+ ion dose, it is possible to confine defects near the etched edges or spread them over ultra-large areas on the basal plane. The electrocatalytic activity of the arrays toward hydrogen evolution reaction (HER) was measured by fabricating microelectrodes using a new method that preserves the catalytic sites. We demonstrate that the overpotential can be decreased up to 290 mV by assessing electrochemical activity only at the basal plane. High-resolution transmission electron microscopy images obtained on FIB patterned freestanding MoS$_{2}$ monolayers reveal the presence of amorphous regions and X-ray photoelectron spectroscopy indicates sulfur excess in these regions. Density-functional theory calculations provide identification of catalytic defect sites. Our results demonstrate a new rational control of amorphous-crystalline surface boundaries and future insight for defect optimization in MoS$_{2}$ monolayers.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.04413
- Bibcode:
- 2023arXiv231104413R
- Keywords:
-
- Condensed Matter - Materials Science
- E-Print:
- 10 pages, 5 figures