Learning High-level Semantic-Relational Concepts for SLAM
Abstract
Recent works on SLAM extend their pose graphs with higher-level semantic concepts like Rooms exploiting relationships between them, to provide, not only a richer representation of the situation/environment but also to improve the accuracy of its estimation. Concretely, our previous work, Situational Graphs (S-Graphs+), a pioneer in jointly leveraging semantic relationships in the factor optimization process, relies on semantic entities such as Planes and Rooms, whose relationship is mathematically defined. Nevertheless, there is no unique approach to finding all the hidden patterns in lower-level factor-graphs that correspond to high-level concepts of different natures. It is currently tackled with ad-hoc algorithms, which limits its graph expressiveness. To overcome this limitation, in this work, we propose an algorithm based on Graph Neural Networks for learning high-level semantic-relational concepts that can be inferred from the low-level factor graph. Given a set of mapped Planes our algorithm is capable of inferring Room entities relating to the Planes. Additionally, to demonstrate the versatility of our method, our algorithm can infer an additional semantic-relational concept, i.e. Wall, and its relationship with its Planes. We validate our method in both simulated and real datasets demonstrating improved performance over two baseline approaches. Furthermore, we integrate our method into the S-Graphs+ algorithm providing improved pose and map accuracy compared to the baseline while further enhancing the scene representation.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- arXiv:
- arXiv:2310.00401
- Bibcode:
- 2023arXiv231000401M
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Robotics