Calibrating baryonic feedback with weak lensing and fast radio bursts
Abstract
One of the key limitations of large-scale structure surveys of the current and future generation, such as Euclid, LSST-Rubin or Roman, is the influence of feedback processes on the distribution of matter in the Universe. This effect, called baryonic feedback, modifies the matter power spectrum on non-linear scales much stronger than any cosmological parameter of interest. Constraining these modifications is therefore key to unlock the full potential of the upcoming surveys, and we propose to do so with the help of Fast Radio Bursts (FRBs). FRBs are short, astrophysical radio transients of extragalactic origin. Their burst signal is dispersed by the free electrons in the large-scale-structure, leading to delayed arrival times at different frequencies characterised by the dispersion measure (DM). Since the dispersion measure is sensitive to the integrated line-of-sight electron density, it is a direct probe of the baryonic content of the Universe. We investigate how FRBs can break the degeneracies between cosmological and feedback parameters by correlating the observed Dispersion Measure with the weak gravitational lensing signal of a Euclid-like survey. In particular we use a simple one-parameter model controlling baryonic feedback, but we expect similar findings for more complex models. Within this model we find that $\sim 10^4$ FRBs are sufficient to constrain the baryonic feedback 10 times better than cosmic shear alone. Breaking this degeneracy will tighten the constraints considerably, for example we expect a factor of two improvement on the sum of neutrino masses
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2023
- DOI:
- 10.48550/arXiv.2309.09766
- arXiv:
- arXiv:2309.09766
- Bibcode:
- 2023arXiv230909766R
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 18 pages, 7 figures