The set of limits of Riemann integral sums of a multifunction and Banach space geometry
Abstract
Let $X$ be a Banach space and $F: [0, 1] \rightarrow 2^{X} \setminus \{ \varnothing \}$ be a bounded multifunction. We study properties of the set $I(F)$ of limits in Hausdorff distance of Riemann integral sums of $F$. The main results are: (1) $I(F)$ is convex in the case of finite-dimensional $X$; (2) $I(F) = I(\operatorname{conv} F)$ in B-convex spaces or for compact-valued multifunctions; (3) $I(F)$ consists of convex sets whenever $X$ is B-convex; (4) $I(F)$ is star-shaped (thus non-empty) for compact-valued multifunctions in separable spaces. (5) For each infinite-dimensional Banach space there is a bounded multifunction with empty $I(F)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2023
- DOI:
- arXiv:
- arXiv:2308.03178
- Bibcode:
- 2023arXiv230803178S
- Keywords:
-
- Mathematics - Functional Analysis;
- 46B20;
- 28B20
- E-Print:
- 12 pages